静的載荷実験に基づいた実大 RC 梁の耐力評価に関する研究 (その4)曲げ降伏型梁部材の M~ φ 関係と設計用モデルの提案

長谷川研究室 01412127 日吉 里沙

1. はじめに

RC 構造物の耐震設計において、柱・梁部材の適切 な復元力特性のモデル化が重要であることは言うま でもない。そこで、2015 年よりシリーズ研究として、 曲げ降伏または脆性破壊が先行する場合の2 種類の 実大 RC 梁を設計・施工して二点載荷実験を行ってき た。まず同題(その1)では、実験計画と実験結果の 概要を示し、RC 梁部材の荷重~変形関係が適切に計 測・評価できることを示した¹⁾。つぎに(その2)と (その3)では、コンクリート圧縮縁における歪みの 計測方法を改良することで、実験から RC 梁断面の曲 率φが精度よく計測・評価できることを示した²⁾。

本報(その 4)では、これらの成果を踏襲して、曲 げ降伏型 RC 梁部材のモーメント〜曲率関係(以後 M ~ φ 関係)について設計用モデルを提案し、その妥 当性を実験との比較で検証した。

2. 二点載荷実験と実験パラメータ

前報^{1),2)}と同様、曲げ降伏型試験体を制作して二 点載荷実験を行った。試験体概要を図1に、実験パ ラメータを表1に示す。今回は引張鉄筋比 P_tの異な る3ケースについて、曲げ降伏が先行するように、 あばら筋比 P_w(=0.238%)が 0.2%以上になるよう設計 した。また、実験では(その2)と(その3)の成果を踏 襲して、コンクリート打設時には高性能AE減水剤を 使用し、コンクリート圧縮縁のゲージはプリコーテ ィング後に貼付した。なお、表1にあるコンクリー ト圧縮強度 σ_B は実験1日前の圧縮強度試験結果で、 鉄筋降伏点 σ_y は引張試験結果によるものである。

3. M~ φ 関係の設計用モデル

3.1 M~ φ関係のモデル化

曲げ降伏型梁部材の M~ φ 関係は、図 2 で示した トリ・リニア型骨格曲線でモデル化した。その各折 点の設計式は表 2 で設定した。第 1 折点のひび割れ モーメント M_e は同表(1)式の経験式で設定し、初期 剛性 K_o は弾性論に基づいて(3)式で設定した。ただ し、(1)式の断面係数Zは全断面コンクリート有効と し、(3)式では等価な I_o を用いることに注意を要す る。つぎに、第 2 折点の降伏モーメント M_y は(2)式 の許容応力度設計式とし、割線剛性 K_y は(4)式で設 定する。ここで、(4)式の剛性低下率 α_y は、ボック ス壁³⁾で用いられる経験式を採用した。なお、第 3 勾配は(5)式のように割線剛性 K_yの 1/100 とした。

3.2 実験との比較検証

実験との比較検証結果を図3に示す。ここで、実 験値の M~ ϕ 関係は図1中の関係式から求めた。ま た、設計値は(4)式の α_y の修正係数 γ について、 γ =0, 0.1, 0.3の3ケースを比較検討した。 γ =0はP_t に依存させない場合で、 γ =0.3はボックス壁で用い られる係数である。比較結果を見ると、いずれの P_t においても、 γ =0では割線剛性Kyを過小評価し、 γ =0.3 では過大評価する。RC 梁部材では γ =0.1 程度 とすると実験との整合性が良い。なお、P_tが小さな 同図(b),(c)では、鉄筋の歪み硬化が現れて、終局 に近い状態に達しているが、いずれのケースとも降 伏点に対する部材塑性率で4程度までは、**表2**の提 案式で充分な精度が確保されている。

4. まとめ

本報(その 4)では、曲げ降伏型 RC 梁部材の M~ φ 関係について設計用モデルを提案し、その妥当性を 実験との比較で検証した。その結果、設計では RC 梁 部材の M~ φ 関係をトリ・リニア型骨格曲線でモデ ル化し、それらの各折れ点を**表 2** で与えるのが実用 的であるとの結論を得た。

【参考文献】

- 西芝拓也:本報同題(その 1),2015 年度ものつくり大学 卒業研究梗概集,127-128,2016
- 2) 坂本和豊・稲嶺匡大:本報同題(その2)・(その3), 2016 年度ものつくり大学卒業研究梗概集, 55-58, 2017
- 社)日本電気協会編:原子力発電所耐震設計技術指針 (JEAG4601),352-359,1987

表1:実験パラメータ

友称	휘보	試験体		
石桥	祀与	Α	В	С
幅	b (mm)		300	
せい	D (mm)	450		
有効せい	d (mm)	386	392	393
せん断スパン	a(mm)	1000		
中立軸~鉄筋間距離	y _s (mm)	165		
圧縮鉄筋断面積(〇)	a _c (mm ²)	253.4		
引張鉄筋断面積(●)	a _t (mm ²)	1161.3	859.59	595.8
引張鉄筋比	P _t (%) 註1)	1.002	0.732	0.501
あばら筋比	P _w (%)	0.238		
コンクリート圧縮強度	$\sigma_{\rm B}$ (N/mm ²)	27	31	
鉄筋降伏点	$\sigma_{\rm v}$ (N/mm ²)	386	390	397
コンクリートのヤング係数	E _c (N/mm ²) 註2)	2.57×10^{4}	2.69×10^{4}	2.69×10^{4}
ヤング係数比	n 註3)	7.98	7.62	7.62
等価断面2次モーメント	I _e (mm ⁴) 註4)	2.59×10^{9}	2.51×10^{9}	2.45×10^{9}
等価断面係数	Z _e (mm ³) 註5)	1.15×10^{7}	1.12×10^{7}	1.09×10^{7}
断面係数	Z (mm ³) 註5)	10125000		

註1) $P_t=a_t/bd$ 註2) $E_c=3.35\times10^4\times(\sigma_B/60)^{1/3}$

註3) n=E_s/E_c , E_s=2.05×10⁵ N/mm² (鉄筋のヤング係数)

註4) $I_e = bD^3/12 + n(a_t + a_e) {y_s}^2$ 註5) $Z_e = I_e/(D/2)$, $Z = bD^2/6$

表 2:設計用 M~ φモデルの提案式

状態	モーメント (M)		剛性 (K)	
第1折点	$M_c = 0.56 \times \sqrt{\sigma_B} \times Z$	•••(1)	$K_c = E_c \times I_e$	•••(3)
第2折点	$M_y = a_t \times \sigma_y \times j$ $j = (7/8) \times d$	••• (2)	$K_y = \alpha_y \times K_c$ $\alpha_y = 0.15 + \gamma \cdot P_t \times 100$	•••(4)
第3勾配	-		$K_u = \frac{1}{100} K_y$	•••(5)

註) (4)式のγ: P_tに応じた修正係数

図 2: M~ φ 関係のモデル化(トリ・リニア型骨格曲線)

中立軸距離: $X_n = \frac{\varepsilon_c}{\varepsilon_c + \varepsilon_s} \times d$

図3:M~ φ関係の比較検証結果