静的載荷実験に基づいた実大 RC 梁の耐力評価に関する研究 (その6) 脆性破壊型梁部材の終局せん断強度の評価

長谷川研究室 01412103 堤 将大

1. はじめに

前報(その4)と(その5)では曲げ降伏型梁部材を対象としたが、本報(その6)では脆性破壊が 先行する梁部材を設計・施工して二点載荷実験を行った。また、その実験結果に基づいて、脆性破壊型 梁部材の終局せん断強度を評価し、その有効な推定 方法について検討した。

2. 脆性破壊型梁部材の荷重~変形関係

脆性破壊型梁部材として設計・施工した試験体を 図1に、その実験パラメータを表1に示す。せん断 破壊が先行するように、あばら筋比 P_w (=0.048%) を 0.2%未満とした以外、試験体と実験パラメータは (その4)及び(その5)と基本的に同様である。 二点載荷実験による荷重~変形関係 (P~ δ 関係)を図2に示す。これより、A~C 試験体では脆性的な 破壊が先行するが、引張鉄筋比 P_t が最小な D 試験体では脆性破壊に至らず、鉄筋の曲げ降伏が先行して、 靱性のある荷重~変形関係を示している。

以上より、あばら筋比が小さな場合には、その復元力特性はおおよそ図 3 のような関係にあるものと考えられる。すなわち、同図(a) のように引張鉄筋比が大きな場合には、「曲げ終局強度 Q_{Mu} >せん断終局強度 Q_{u} 」となって脆性的な破壊に到る。一方、引張鉄筋比が小さな場合には、同図(b) のように「せん断終局強度 Q_{u} 」となって曲げ降伏が先行し、靱性に富んだ「ねばり」のある復元力特性を示すことになる。

3. 荒川式による終局せん断強度の推定

図3(a)に示したせん断破壊先行型(A~C試験体)を対象として、その終局せん断強度Quの実用的な推定方法を検討してみる。それは、脆性破壊型試験体では破壊荷重の予測が極めて困難なことによる。設計では、せん断耐力の評価に荒川式¹⁾が良く用いられる。そこで、ここでも同式を用いた終局せん断強

度の推定方法を考える(表2参照)。まず、同表(1)式と(2)式で終局せん断強度を評価した場合の設計値と実験値の比較を図4に示す。これより、引張鉄筋比 P_t が大きな場合には、荒川最小式とほぼ同等であるが、 P_t が小さくなるに従って実験値と離れる傾向にある。そこで、 P_t に応じて(2)式の補正係数 η を修正してみる。

ここでは、かなり単純な方法として、図2で示し たA~C試験体の破壊荷重(実験値)と、表2中の荒 川式(2)による Qu(設計値)とが一致する場合の補 正係数ηを各試験体について逆算し、その結果を引 張鉄筋比 Pt の回帰式で表現する方法を試みた。結果 は図5に示す通りで、横軸に引張鉄筋比Ptを、縦軸 に補正係数ηをとったグラフにA~C試験体の逆算結 果をプロットし、これらの直線回帰式を併せて示し た。あばら筋比 Pwが一定の下では、Ptの増加によっ てせん断破壊が先行しやすくなる。同図の結果を見 ると、Ptが大きくなるに従って、せん断強度の実験 的下限値を示す補正係数: η =0.053 (荒川最小式) に近接することから、この推定方法の妥当性が確認 できる。ただし、今回はあくまで3試験体での回帰 に過ぎないので、今後はPwとPtの組合せで多くの破 壊実験を行い、ηの推定精度を高める必要がある。

4. まとめ

脆性破壊型梁部材の実験結果に基づいて、終局せ ん断強度の実用的な推定方法を提案した。脆性破壊 型試験体の載荷実験では、その破壊荷重の予測が難 しいことから、ここでの推定方法はかなり有用な方 法と考えられる。また、そのためには各種鉄筋比の 下で載荷実験を追加し、その推定精度を高める必要 がある。

【参考文献】

1) 林静雄ほか:建築家のための鉄筋コンクリート構造, 市ヶ谷出版, 109-119, 2006

図1: 脆性破壊型試験体の概要

図 2:A~D 試験体の荷重~変形関係 $(P_w=0.048\%)$

図3: RC 梁部材の荷重~変形関係の分類

表 1: 実験パラメータ

名称	記号	試験体			
		A	В	C	D
幅	b (mm)	300			
梁せい	D (mm)	450			
有効せい	d (mm)	385	388	391	393
せん断スパン	a (mm)		1000		
補強筋間隔	x (mm)		1000		
あばら筋断面積	$a_w(mm^2)$	142. 66			
圧縮鉄筋断面積(○)	$a_c (mm^2)$	253. 4			
引張鉄筋断面積(●)	$a_t(mm^2)$	1520.1	1161.3	859.59	595.8
引張鉄筋比	P _t (%) 注1)	1. 267	0.968	0.716	0.413
あばら鉄筋比	P _w (%) 注 2)	0.048			
コンクリート圧縮強度	$\sigma_{\rm B}~({\rm N/mm^2})$	31 32.6			
あばら筋降伏強度	$_{\rm w}$ σ $_{\rm y}$ (N/mm ²)	295			

注1) P_t=a_t/bd 注2) P_w=a_w/bx

表2: 荒川式によるせん断耐力の評価

ひび割れ せん断力 (Qc)	$Q_c = \frac{0.065 \times 0.72(50 + \sigma_B)}{M/Qd + 1.7} \times b \times j$, $j = 7/8d$	(1)
終局せん 断力(Qu)	Q _u = $\left[\frac{\eta \times (P_t \times 100)^{023} \times (18 + \sigma_B)}{M/Qd + 0.12} + 0.85 \sqrt{P_w \times_w \sigma_y}\right] \times b \times j$	(2)

註)η:補正係数(η=0.053:荒川最小式)

図4:せん断耐力の比較

図 5: 荒川式の補正係数の推定 (Pw=0.048%)