論 文 Article

スターリングエンジン設計計算支援ソフトウェアの開発

原稿受付 2015年5月8日 ものつくり大学紀要 第6号 (2015) 13~22

岡田光一郎^{*1}, 菅谷諭^{*2}

*1 株式会社大村製作所*2 ものつくり大学 技能工芸学部 製造学科

A Development of Stirling Engine Design Calculation Support Software

Koichiro OKADA^{*1}, Satoshi SUGAYA^{*2}

*1 OHMURA SEISAKUSHO Co., Ltd.

*2 Dept. of Manufacturing Technologists, Institute of Technologists

Abstract In recent years, such as Manufacturing introduced education, production of model Stirling engine is incorporated. But for beginners, performing the design calculation of the engine is difficult. Therefore, we feel the need of performance analysis software in order to proceed with the engine design smoothly, was carried out design calculations support software development of easy-to-use such model Stirling engine also the first scholar.

Key Words : Stirling engine, design calculation, support software

1. はじめに

近年,ものづくり導入教育などで,模型スター リングエンジンの製作が取り入れられている¹⁾.し かし初学者にとっては,エンジンの設計計算から 行うことは困難である²⁾.そこで,エンジン設計を 円滑に進めるための性能解析ソフトウェアの必要 性を感じ,初学者でも容易に使用できるような模 型スターリングエンジンの設計計算支援ソフトウ ェアの開発を行った³⁾.

2. ソフトウェアの概要

スターリングエンジンとは, Fig.1 に示すように, エンジン内部作動気体の圧力・体積変化を利用し て動力を発生させる外燃機関に分類されるエンジ ンである.理論熱効率が高く,高温・低温空間で 温度差を発生できる条件であれば熱源を問わない ために,応用範囲は従来の化石燃料のみならず, ゴミ焼却場,工場の排熱など多岐にわたっている. 開発にあたりソフトウェアへの要求を以下のも

- のとした.
 - ・Excel を用いること
 - ・入力箇所を可能な限り減らすこと
 - ・図やコメントを多用すること
 - ・Excelのコメント機能を多用すること
 - ・シュミット理論に基づき式の構築を行うこと

開発したソフトウェアは、α型スターリングエ ンジンの設計計算をエンジン製作初学者でも容易 に行うことができるよう配慮したものであり、 Excelを用いた表計算式のものとなっている.これ は、教育現場で最も普及している計算ソフトウェ アであり,互換性や操作性,拡張性の問題に対し て柔軟に対応できると考えたためである.エンジ ンの設計条件をα型単クランク機構に限定したこ とで,各容積の計算を寸法入力のみで求めること ができ,サイドスラスト比によるコンロッド長さ の選定も可能である.また,各入力寸法からエン ジンの設計に必要な主要寸法が自動で出力される ことも特徴である.

Fig.1 Schematic diagram of the Stirling engine

3. 式の構築

ソフトウェアの製作にあたりプログラムの構築 が必要となる.そこで Excel に登録されている各 数式を用いてプログラムを作成することにした. またプログラムの構築にあたり,使用する記号と 単位を Table 1 にまとめる.

名称	記号	単位
膨張ピストン長さ	А	mm
圧縮ピストン長さ	В	mm
シリンダー長さ	С	mm
加熱器長さ	D	mm
冷却器長さ	Е	mm
ピストンピン距離	F	mm
クランクジャーナル	G	mm
ピストン直径	Н	mm
加熱器内径	J	mm
冷却器内径	К	mm
加熱側上死点のクリ	L	mm
冷却機上死点のクリ	М	mm

Table 1 Symbol and unit

加熱器ドリル先端	Ν	mm
摺動面の追加	0	mm
膨張側ストローク	L_{eS}	mm
圧縮側ストローク	Lcs	mm
作動ガス圧力	P _{mean}	Pa
バッファ圧力	Pb	Pa
エンジン内ガス瞬時	Р	Pa
加熱ピストン断面積	Em	mm^2
冷却ピストン断面積	Cm	mm ²
再生器断面積	Ι	mm ²
膨張ピストン行程容	Vе	mm ³
圧縮ピストン行程容	νc	mm ³
膨張空間瞬時容積	V_{e}	mm ³
膨張空間瞬時最大容	V _{Emax}	mm ³
圧縮空間瞬時容積	V_{c}	mm ³
圧縮空間瞬時最大容	V _{Cmax}	mm ³
膨張空間死容積	V_{de}	mm ³
圧縮空間死容積	V_{dc}	mm ³
再生器空間容積	$V_{\rm R}$	mm^3
全無効容積	Vd	mm ³
エンジン内瞬時全容	V	mm ³
エンジン内ガス質量	m	g
作動ガス定数	Ra	J/(Kg • K)
膨張空間ガス温度	$T_{\rm E}$	К
圧縮空間ガス温度	Тс	К
再生空間ガス温度	TR	К
位相角	β	deg
クランク角	θ	deg
エンジン回転数	n	rpm
回転周波数	Hz	Hz
ピストンに働く力	Fp	Ν
サイドスラスト	Fn	Ν
膨張空間仕事量	WE	J
圧縮空間仕事量	Wc	J
1 サイクルあたりの仕	Wi	J
理論エンジン出力	Li	W
理論エンジン回転ト	L _n	Nm
熱効率	ηi	%

本ソフトウェアは、単クランク機構エンジンを 前提としている.単クランク機構は、ピストン往 復運動を回転運動に変換する最も基本的なリンク 機構である.ピストンによる往復運動を無駄なく 取り出すためには、直線運動を行う動力取り出し 機構が望ましいとされている.しかし単クランク 機構では、ピストンの直線運動に対し斜め方向に 動力が取り出される形になり,サイドスラストが 発生してしまう.これに対しコンロッド Leon を延 長することにより,位相差々を抑えることが可能 となるため,サイドスラストを低減し機械損失の 少ないエンジンとなる.クランク半径に対してど の程度のコンロッド長さが望ましいかを算出する ための式の構築にあたり,ピストンに作用する力 "サイドスラスト"に注目した.サイドスラスト は,クランク長さ比を短くとることで増大し,逆 に長くとることで減少する.そこでピストンに働 く力 Fp とサイドスラスト Fn から求められるサイ ドスラスト比をもとにコンロッド長さの選定を行 うことにした.

サイドスラスト F_n は、ピストンに働く力 F_p 、ク ランク角 θ 、およびクランク長さ比 λ より次式で 表される.

$$F_n = F_p \cdot \frac{\sin \theta}{\sqrt{\lambda^2 - \sin \theta^2}}$$

サイドスラスト比 F_h は, ピストンに働く力 F_{p_i} およびサイドスラスト F_n より次式で表される.

$$F_h = \frac{F_n}{F_p}$$

サイドスラスト比 Fhをクランク角 1deg ごとに 計算し, グラフにまとめたものが Fig.2 のサイドス ラスト比グラフである.

Fig.2 Side thrust ratio

このグラフは、クランク長さ比が増大すれば正 弦波の振れ幅が小さくなり、逆に減少すれば振れ 幅が大きくなる.ここで問題となるのが、サイド スラスト比の振れ幅がどの程度になれば良いかで ある.そこで本ソフトウェアに基づいて同条件の エンジンを製作して耐久性の検証を行った.その 結果,サイドスラスト比の最大・最小値がそれぞ れ0.16のエンジンにおいて,Fig.3に示すように, 4000rpm 程でシリンダー摺動面の損傷が見られた.

Fig.3 Damaged cylinder

この結果から,サイドスラスト比の安全値を ~4000rpm までのエンジンでサイドスラスト比の 最大・最小値がそれぞれ 0.15 未満,それ以上の高 回転エンジンはそれぞれ 0.12 未満と置くことにし た.

続いてエンジンの出力算出を行うためにシュミ ット理論を適用することにした.シュミット理論 とは、スターリングエンジンの解析に用いられる 計算手法で、エンジン内の各空間容積および熱量、 ガス圧力から仕事量を求めることができる.これ は、スターリングエンジン解析の上で簡便な手法 であるが、内部熱量で計算を行うシュミット理論 の特性上、損失で最も大きな割合を占める熱損失 を考慮する必要がない.そのため機械損失、再生 熱損失、流動摩擦損失の考慮のみで済むことにな り、比較的高精度な計算結果が得られる.一方で シュミット理論を適用するには、幾つかの仮定が 必要であり、それらを以下に示す.

1)熱交換器(加熱器,再生器,冷却器)での圧力損失 は無視し,エンジン内圧力は場所によらず一様

とする.

2)等温膨張,等温圧縮とする.

3)作動ガスは理想ガスの状態式に従い,エンジン外

部への漏れはないものとする.

4) 完全な再生熱交換を行う.

- 5)膨張空間,およびそれに付随した無効空間は,膨 張空間ガス温度 TEに保たれ,圧縮空間およびそ れに付随した無効空間は圧縮空間ガス温度 Tcに 保たれる.
- 6)全ての無効空間ガス温度 T_Rは, 膨張空間ガス温 度 T_E と圧縮空間ガス温度 T_C の平均値で保たれ る.
- 7)膨張空間および圧縮空間の容積は,正弦波状に変 動する.

シュミット理論は、 α 型、 β 型、 γ 型スターリ ングエンジンに適用可能であるが、今回は α 型エ ンジンに限定して式の構築を行った.

はじめに、スターリングエンジンにおける膨張 空間瞬時容積 V_{E} , 圧縮空間瞬時容積 V_{C} , および全 無効容積 V_{d} を求める. 膨張ピストン行程容積 ν_{e} は、膨張ピストン断面積 E_{m} , 膨張ピストンストロ ーク L_{es} より次式で表される.

 $\nu_e = E_m \cdot L_{eS}$

膨張空間瞬時容積 V_e は、膨張ピストン行程容積 v_e , クランク角 θ より次式で表される.

$$V_e = \frac{v_e}{2} (1 - \cos \theta)$$

圧縮ピストン行程容積 v c は, 圧縮ピストン断面 積 C_m, 圧縮ピストンストローク L_{cs} より次式で表 される.

$$v_C = C_m \cdot L_{CS}$$

圧縮空間瞬時容積 V_c は, 圧縮ピストン行程容積 v_c , クランク角および位相角 β により次式で表される.

$$V_C = \frac{\nu_C}{2} (1 - \cos\theta - \beta)$$

加熱空間死容積 V_{de}は、ピストン直径 H,加熱器 長さ D,加熱器内径 J,加熱側上死点のクリアラン スL,ドリル先端死容積 V_{ded}より次式で表される. ドリル先端 V_{ded}は、追加しない場合であるならば 0 とする.

$$V_{de} = \left(\frac{J}{2}\right)^2 \cdot \pi D - \left(\frac{H}{2}\right)^2 \cdot \pi (D-L) + V_{ded}$$

冷却空間死容積 V_{dc}は、ピストン直径 H,冷却器 内径 K,冷却器長さ E,冷却側上死点のクリアラ ンス M より次式で表される.

$$V_{dc} = \left(\frac{K}{2}\right)^2 \cdot \pi E - \left(\frac{H}{2}\right)^2 \cdot \pi (E - M)$$

再生空間容積 VRは,再生器断面積 I および再生 器長さ LRより次式で表される.

$$V_R = I \cdot L_R$$

全無効容積 Vaは, 膨張空間死容積 Vde, 圧縮空間死容積 Vde, に縮空間死容積 Vdc および再生空間容積 VR により次式で表される.

$$V_d = V_{de} + V_R + V_{dc}$$

算出された $V_{e_i} V_C$ に V_d を加えエンジン内瞬時全 容積 V とする.

$$V = V_e + V_C + V_d$$

これらをクランク角 1deg ごとに計算してグラフ にまとめたものが Fig.4 のエンジン内瞬時容積グ ラフである.

また,それらの最大・最小値を比で表したもの が圧縮比である.

続いてエンジン内ガス瞬時圧力 Pの算出を行う. エンジン内ガス瞬時圧力 Pの算出の過程で,はじめに温度比 τ ,行程容積比 κ ,および全無効容積比 X を求める.温度比 τ は,膨張空間ガス温度 $T_{E_{r}}$ および圧縮空間ガス温度 T_{c} より次式で表される.

$$\tau = \frac{T_C}{T_E}$$

行程容積比 κ は, 膨張ピストン行程容積 v_{e_i} および圧縮ピストン行程容積 v_e より次式で表される.

$$\kappa = \frac{\nu_0}{\nu_0}$$

全無効容積比 X は、全無効容積 V_{d} および膨張 ピストン行程容積 v e より次式で表される.

$$X = \frac{V_d}{v_e}$$

また, 仮定 6)に基づき無効空間ガス温度 T_R は次 式となる.

$$T_R = \frac{T_e + T_C}{2}$$

次に位相差 ϕ ,係数 S_H,係数 B_Hを求める.位 相差 ϕ は,温度比 τ ,行程容積比 κ ,および位相 角 β より次式で表される.

$$\varphi = tan^{-1} \frac{\kappa \sin\beta}{\tau + \kappa \cos\beta}$$

係数 S_H は,温度比 τ ,行程容積比 κ ,および全 無効容積比 X より次式で表される.

$$S_H = \tau + \frac{4\tau X}{1+\tau} + \kappa$$

係数 B_{H_i} は温度比 τ , 行程容積比 κ , および位 相角 β より次式で表される.

 $B_H = \sqrt{\tau^2 + 2\tau\kappa\cos\beta + \kappa^2}$

次に係数 σ を求める.係数 σ は,係数 S_{H_1} および係数 B_H より次式で表される.

$$\sigma = \frac{B_H}{S_H}$$

続いて位相差 φ, 係数 S, 係数 B_H よりエンジン 内ガス瞬時圧力 P を求める. エンジン内ガス瞬時 圧力 P は, 作動ガス圧力 P_{mean}, 係数 S_H, 係数 B_H, クランク角 θ, 位相差 φ より次式で表される.

$$P = \frac{P_{mean} \sqrt{S_H^2 - B_H^2}}{S_H - B_H \cos \theta - \varphi}$$

エンジン内ガス瞬時圧力 P をクランク角 1degご とに計算してエンジン内瞬時全容積 V と関連付け たうえでグラフにまとめたものが Fig.5 の P-V 線 図である.

Fig.5 P-V diagram

次に,算出したエンジン内瞬時圧力 P,および作 動ガス定数 Ra,各空間容積からエンジン内ガス全 質量 m を求める.

$$m = 10^{-9} \left(\frac{PV_E}{R_a T_E} + \frac{PV_R}{R_a T_R} + \frac{PV_C}{R_a T_C} + \frac{PV_{de}}{R_a T_E} + \frac{PV_{dc}}{R_a T_C} \right)$$

次に, ピストンに作用する力 Fpを求める. 単ク ランク機構におけるピストンには, ガス圧力によ る力, 往復運動による慣性力およびピストンへの 重力が作用する. 一方で模型エンジンにおいて慣 性力, および重力は, ガス圧力による力に対して 極めて小さいため, 今回はそれらを無視しピスト ンに作用する力およびトルクを求めることにした. ガス圧力によってピストンに働く力 Fpは, ピスト ン断面積 AP, ガス圧力 P およびバッファ圧力 Pb を用いて次式で表される.

$$F_p = E_m (P - P_b) 10^{-6}$$

次に各回転トルクおよび,その合計を求める. 加熱側回転トルクはピストンに働く力 F_p ,クラン ク半径 R,クランク長さ比 λ ,クランク角 θ より 次式で表される.

加熱側回転トルク =
$$F_p \cdot \left(R \cdot 10^{-3} + \frac{1}{2\lambda} \sin 2\theta \right)$$

冷却側回転トルクは次式で表される.

冷却側回転トルク = $F_p\left((\sin\theta - \varphi) + \frac{1}{2\lambda}\sin(2\theta - \varphi)\right)R \cdot 10^{-3}$

算出された加熱・冷却側回転トルクを基に回転 トルク合計を求める.

回転トルク合計=加熱側回転トルク+冷却側回転トルク 加熱・回転トルクおよび回転トルク合計とサイ ドスラスト Fnをクランク角 1deg ごとに計算して グラフにまとめたものが Fig.6 の回転トルク, サイ ドスラストの比較グラフである.

Fig.6 Rotation torque and side thrust

次に,各空間仕事量を求める.膨張空間仕事量 WEは,作動ガス圧力 Pmean,膨張ピストン行程容 積λe,係数σ,位相差φより次式で表される.

$$W_E = 10^{-9} \left(\frac{P_{mean} \lambda_e \pi \sigma \sin \varphi}{1 + \sqrt{1 - \sigma^2}} \right)$$

圧縮空間仕事量 W_c の算出にあたり,まずは 1 サイクルあたりの仕事量 W_i を求める.1 サイクル あたりの仕事量 W_i は,作動ガス圧力 P_{mean} ,膨張 ピストン行程容積 λ_e ,係数 σ ,温度比 τ ,位相差 ϕ より次式で表される.

$$W_i = 10^{-9} \left(\frac{P_{mean} v_e \pi \sigma \left(1 - \tau \right) sin \varphi}{1 + \sqrt{1 - \sigma^2}} \right)$$

続いて膨張空間仕事量 W_{E_i} および 1 サイクルあ たりの仕事量 W_i から圧縮空間仕事量 W_C を求める. 圧縮空間仕事量 W_C は,膨張空間仕事量 W_{E_i} およ び1サイクルあたりの仕事量 W_i より次式で求めら れる.

$W_C = W_E - W_i$

続いて先に算出された 1 サイクルあたりの仕事 量 W_{i} ,および回転数 n から理論エンジン出力 Li を 求める.そして求められた Li を用いて n から理論 エンジン回転トルク Ln を求めることができる.理 論エンジン出力 Li は 1 サイクルあたりの仕事量 Wi および回転数 n より次式で表される.

$$L_i = \frac{W_i n}{60}$$

理論エンジン回転トルク Lnは,理論エンジン出

力Liおよび回転数nより次式で表される.

$$L_n = \frac{L_i}{\frac{n}{60}2\pi}$$

熱効率 η i は, 次式で表される.

$$\eta_i = \frac{W_i}{W_E} \cdot 100$$

$$\eta_i = (1 - \tau) \cdot 100$$

続いてエンジンの主要寸法を求める.本プログ ラムにシュミット理論を適用したことでエンジン の出力計算が可能になった.一方で算出された図 示出力に近付けるためには無理のないエンジン設 計でなければならない.しかしエンジン設計初学 者にとってそれらを行うことは難しいものでもあ る.そこでソフトウェアに入力された寸法・数値 を基にエンジン製作のために必要となる各部長さ 寸法,レイアウト寸法を求められないかと考えた.

はじめに膨張ピストン長さを求める. 膨張ピス トン A の長さは加熱器長さ D, 加熱器上死点クリ アランス L, ピストン直径 H より求められる. し かし模型エンジンは, ピストンがシリンダーに接 している面(摺動面)の長さがピストン直径以上で なければエンジン内作動ガスの漏れ, サイドスラ ストによるピストンおよびシリンダーの"かじり" が発生する. そこで新たな要素として"摺動面の 追加 O"を加えた.

以上より膨張ピストン長さ A は次式で表される.

$$A = D - L + H + O$$

次に圧縮ピストン長さを求める. 圧縮ピストン 長さ B は冷却器長さ E, 冷却器上死点のクリアラ ンス N, ピストン直径 H, 摺動面の追加 O で求め られる.

圧縮ピストン長さBは、次式で表される.

B = E - N + H + O

続いて各シリンダー長さを求める.シリンダー 長さ C は,クランク半径 R,ピストン直径 H,摺 動面の追加 O より求められる.

シリンダー長さCは、次式で求められる.

$C=R\cdot 2+H+O$

続いてクランクジャーナル距離を求める. クラ ンクジャーナル距離 G は, コンロッド長さ Lcon, ピストンピン距離 F, クランク半径 R より求めら れる. このとき, ピストンは下死点にあるものと する.

 $G = L_{con} - F - R$

4. ソフトウェアの精度向上

スターリングエンジンの解析に用いられるシュ ミット理論は, 簡便ながらも比較的高精度な計算 結果が得られる.一方で本理論に基づいた実機の 軸出力と図示出力を比較した場合、その解析精度 は未確認である.また、実物のエンジンは様々な 損失が挙げられるため、それらをすべて考慮する ことは困難である. そこで本研究では、計算シミ ュレーションを基に、ほぼ同条件のエンジンを製 作し, 軸出力を測定して, 算出された図示出力と 軸出力を比較検討することで損失割合を算出し, 理論値精度の確認とともに損失割合をプログラム にフィードバックすることでソフトウェアの精度 向上を図ることにした.実験エンジンの製作にあ たり、エンジン形式は本ソフトウェアを適用する ために α 型単クランク機構とした. なお実験用エ ンジンの諸元を Table 2 に示す.

本エンジンは、ボア 18.9mm, ストローク 19mm のほぼスクエアストロークであり、また再生器断 面積確保のために再生通路を 2 本設けている. 測 定にあたり性能のばらつきを考慮して同型のもの を 3 台製作した.

膨張ピストン行程容積 5330.49 (mm^3) 圧縮ピストン行程容積 5330.49 (mm^3) 2623.74 加熱空間死容積 (mm^3) 冷却空間死容積 629.22 (mm^3) 全無効容積 4398.37 (mm³) 加熱·冷却空間温度差 (°C) 490 平均作動ガス圧力 101300 (Pa) 作動ガス定数 287(J/kgK) 圧縮比 2.26

 Table 2
 Specification of the engine for experiments

次に実験エンジンの出力測定にあたり、電気抵 抗を利用した吸収動力式のトルク測定器を製作し た. 実験系を Fig.7 に示す. 吸収動力計の一種であ るプロニーブレーキ方式は、固定摩擦力による動 力吸収方法であり,運転時に制動性の可変が難し いとされるが、今回採用した電気動力式は回転に より得られたエネルギーを電気エネルギーに変換 するため,制動に電気抵抗を変化させるだけで済 むため運転時のトルク調整が比較的容易である. 一方でブレーキとして使用する直流モーターは, 回転時にトルクムラが発生するため、出来るだけ トルクムラの少ないものを選ぶ.続いて実験方法 であるが、ソフトウェアによる図示出力と実測に よる軸出力の検証を行ううえではじめに軸出力を 求める.軸出力の算出にあたり,エンジン回転数 および回転トルクの実測が必要である. エンジン 回転トルクは、エンジンより発生した出力をトル ク測定器で制動をかけ、その際に発生したトルク 反力を電子天秤で測定する.またトルク測定と同 時に非接触式のデジタルタコメータを使用し、フ ライホイールの回転数も測定する.なお、実験の 開始前に測定器損失分の回転トルクを測定し、出 力の測定結果を補正する.実験では膨張・圧縮側 の各作動ガス温度の測定も必要である. 圧縮側は, 圧縮空間内に K 型熱電対を挿入することによって, 作動ガス温度を常に測定可能であったが、膨張側 は,加熱器が非常に高温となるため,圧縮空間と

同じ測定法方をとることができず,加熱器をエン 熱しながら加熱器内ガス温度の測定を行った. ジンから取り外し加熱器のみをガスバーナーで加

Fig.7 Experimental equipment

その結果 555℃で安定化することが分かり,その 間に要した時間はおおよそ 40 秒であった.一方で 圧縮空間はエンジンへの加熱を開始して約 2 分で 65℃に達し安定化することが分かったため,加熱 を開始して 2 分が経過した時点で実験を開始した. また,エンジントルクは 18.1g を発揮した状態で 安定化することが分かったため,18.1g に達した時 点でエンジン回転数を測定した.

また,出力算出にあたり,はじめに回転トルク を算出し,次に出力を求める.そして測定された エンジン回転数を基にソフトウェアで図示出力を 算出し,求められた軸出力との割合を比較検討す る.式の構築にあたり使用する記号および単位を Table 3 に示す.

名称	記号	単位
荷重	$N_{\rm L}$	Ν
測定器抵抗	$N_{ m R}$	Ν
軸半径	Rm	m
エンジン回転トルク	Nm	Nm
回転数	n	rpm
出力	W	W

Table 3	Symbol	and	unit
---------	--------	-----	------

エンジン回転トルク N_mは,荷重 N_L,測定器抵 抗 N_Rおよび軸半径 R_mより次式で表される.

$N_m = (N_L + N_R) \cdot R_m$

出力 W は、回転数 n およびエンジン回転トルク Nmより次式で表される.

$W = \frac{n}{60} \cdot 2\pi n$

作製した3基のエンジンに対して,各5回ずつ 出力測定を行った.なお,実験を行った際の温度 条件は,膨張側が555℃,圧縮側が65℃とし,測 定回転トルクは0.028Nmとした.ここで表示され る割合(%)は,測定による軸出力と温度条件,およ び回転数を基に算出された図示出力の割合とする.

これらの各回転における軸出力と図示出力の割 合から平均0.7855という数値を得ることができた. したがってシュミット理論に対する本エンジンの 軸出力は78.55(%)といえる.この数値を基準とし てプログラム結果に反映することにした.

膨張空間ガス温度 : 555℃								
圧縮空間ガス温度:65℃								
	測定回転トルク:0.028(Nm)							
	1 号機		2 号機			3 号機	3 号機	
(rpm)	(W)	割合(%)	(rpm)	(W)	割合(%)	(rpm)	(W)	割合(%)
1271	3.73	78.38	1379	3.77	78.72	1287	3.79	78.65
1390	4.08	78.20	1298	3.82	78.60	1311	3.86	78.65
1319	3.87	78.37	1334	3.93	78.68	1364	4.02	78.72
1317	3.96	78.28	1494	4.40	78.62	1365	4.02	78.71
1298	3.81	78.40	1494	4.40	78.66	1365	4.02	78.65

Table 4 Comparison of output

5.ソフトウェアの改良

本ソフトウェアの有効性の確認および改良点の 調査を目的に、ものつくり大学の授業科目である[「フレッシュマンゼミⅡ」を通じて,エンジン製 作初学者でもある製造学科1年生を対象に本ソフ トウェアを使用させた上でアンケート調査を実施 した. その結果以下のような要望を得た.

- ・単位を統一してほしい
- ・全ての要素に記号がほしい
- ・グラフを分かりやすく表示してほしい
- β型に対応したものも作ってほしい
- 細かすぎてわかりづらい
- ・もう少し色分けがほしい
- ・エンジンの性能をまとめた表がほしい

反映前

Fig.8 Improvement of output

6.実験結果および要望の反映

本ソフトウェアで算出される理論値と実測値の 差を小さくするため、実験結果を反映することで 実測値に基づくエンジン出力の算出が可能になっ た.またアンケート調査による要望により、出力 2の表示を手直しすることで、Fig.8に示すように 必要な情報をより分かりやすく表示するよう配慮 した.

主な改良点は以下の通りである.

- ・メートル表記をミリ表記に直した
- ・要素ごとに表を分類した

・エンジン回転トルクを表示できるようになった
・理論エンジン出力のみではなく、より軸出力に
近い値"実測に基づくエンジン出力"を表示できるようにした

7.スターリングテクノラリー出場エンジン への適用

スターリングエンジンの性能を競う大会"スタ ーリングテクノラリー"が毎年 11 月に日本工業大 学で開催される.それに向けて製作したエンジン の設計に本ソフトウェアを採用した.結果は,MS 部門で優勝1台,RC部門で入賞1台の成績を残す ことができた.以上から,本ソフトウェアの有効 性を示すことができた.

8.まとめ

開発したソフトウェアにより,エンジン設計初 学者でも,スターリングエンジンの性能解析手法 であるシュミット理論を容易にエンジン設計に反 映できるようになった.また,フレッシュマンゼ ミで本ソフトウェアをエンジン設計に使用したチ ームはすべて完動することができ,スターリング テクノラリーでも優勝1台,入賞1台の成績を残 すことができた.以上から,本ソフトウェアの有 効性を示すことができた.

一方で"実測に基づくエンジン出力"の計算結 果は、一種類のエンジンの実測に基づいたもので あり、行程容積等条件の異なるエンジンに適用さ せた場合の解析精度は未確認である.そのためソ フトウェアの精度向上のためには、様々な条件の エンジンの出力を実測して結果を反映させる必要 がある.

参考文献

- 濱口和洋,平田宏一,戸田富士夫,岩本昭一: 模型づくりで学ぶスターリングエンジン,オ ーム社
- 山下巌,香川澄,平田宏一,百瀬豊,濱口和 洋:スターリングエンジンの設計,パワー社
- 岡田光一郎: Excel を用いた模型用スターリングエンジン設計計算支援ソフト開発,2014 年度ものつくり大学卒業研究論文,2014.