静的載荷試験に基づいた実大 RC 梁の耐力評価に関する研究 (その1)曲げ降伏型試験体とせん断破壊型試験体の耐力評価

長谷川研究室 01212098 西芝 拓也

1. はじめに

実大 RC 構造物の耐力評価は耐震設計において重 要な課題と言える。本報では、実大 RC 梁の静的載 荷実験を行う機会を得たので、その結果を設計耐力 との比較で報告する。

2. 実験概要

2.1 試験体

試験体は幅 300mm、せい 450mm、スパン 3,200mm の鉄筋コンクリート(RC)梁で、曲げ降伏型(以後 M 型:M1~M4)とせん断破壊型(Q型:Q1~Q4)の2 種類、計 8 体を製作して実験に用いた。ここに、M 型はあばら筋間隔を 200mm 以下とし、Q型は下端筋 に SD345 を用いて、それぞれ曲げ降伏とせん断破壊 が先行するよう設計した。M1 試験体配筋図を図1に、 各試験体諸元を**表1**に示す。

2.2 試験方法

本学ストラクチャー実習場に整備された油圧ジャ ッキを用いて載荷実験を行った。荷重ステップは Δ P=25kN とし、ひび割れを追跡しながら漸増載荷した。 歪み計は下端筋中央とコンクリート天端中央にそれ ぞれ 3 ヶ所設置した。また、接触型 100mm 変位計を 設置して、試験体中央のたわみ δ を計測した(以上、 図1参照)。

2.3 試験結果の荷重~変位関係

試験結果として、各試験体の荷重 P と変位δの関係を図2 に整理した。これより、M 型では引張鉄筋の降伏と共に荷重が頭打ちとなって変位が増大し、いわゆるエネルギー吸収がはかれる靱性型の復元力特性を示すことが分かった。一方、Q 型では載荷中に突如せん断破壊し、いわゆる脆性型の破壊形式を示す結果となった。次章以降では、これらの実験結果を設計耐力との比較で評価してみる。

3. 曲げ降伏型試験体の耐力評価

M1 試験体を例に、モーメント M とδの関係を図 3(a)に示す。同図には、設計で用いられる耐力評価 式(表2参照)のうち、ひび割れモーメント Mc と 降伏モーメント My の設計値も併記した。これより、 剛性劣化点において、実験の Mc と My は設計値とか なり良い対応を示す。そこで、すべての M 型試験体 について、実験値と設計値を比較すると図3(b)の結 果を得た。このように曲げ耐力については、Mc 及び My とも実験と設計で極めて良い一致をみた。

4. せん断破壊型試験体の耐力評価

Q1 試験体を例に、せん断力 Q とδの関係を図 4(a)に示す。ここでも、表 2 で掲載した耐力評価式 のうち、本報では荒川式 Dによるひび割れせん断力 Qc と終局せん断力 Qu の値を併記した。また、すべ ての Q 型試験体について、Qc と Qu の実験値と設計 値の比較を図 4(b)に整理した。以上から分かるよう に、本実験の終局耐力は荒川式の Qc に対応し、同 Qu よりも実験では過小評価となった。この理由は、 試験体のせん断力が生じる部位において、せん断補 強筋(あばら筋)が有効に働いていないためと考え られる(表 1 参照)。今後、終局せん断耐力を検討 するためには、Q 型試験体の改善が必要といえる。

5. おわりに

実大 RC 梁の静的載荷実験を行い、その結果を設 計耐力との比較で評価したところ、降伏モーメント については現行設計の妥当性が確認された。一方、 終局せん断力については、実験も含めて今後の課題 が残った。

【引用文献】

1) 荒川卓:鉄筋コンクリート梁の許容せん断応力とせん断補 強について、コンクリートジャーナル、Vol. 8, No. 7, 1970.

An Experimental Study on Bearing Capacity of Actual RC Beams Subjected to Static Loads. (Part1)A Comparison of Bending Yield Type and Shearing Failure Type

図1: 実大 RC 梁の配筋図(M1 試験体)

表1:各試験体諸元

試験体名	M1	M2	MЗ	M4	Q1	Q2	Q3	Q4
上端筋	2-D13							
下端筋	3-D19	3-D19	3-D22	3-D19	3-D22	3-D22	3-D19	3-D22
あばら筋間隔[mm]	200	200	100	200	1000	750	1000	1000
引張鉄筋比Pt[%]	0.718	0.718	0.968	0.718	0.968	0.968	0.718	0.968
あばら筋比Pw[%]	0.237	0.237	0.475	0.237	0.048	0.063	0.048	0.048
平均σ _B [N/mm ²]	22.3	22.3	26.9	26.9	26.9	26.9	28.5	28.5

注) σ Β: コンクリートの圧縮強度(1週~3週強度でテストピース3体の平均値

